Home / Crop Monitoring / Potential monitoring of crop production using a satellite-based Climate-Variability Impact Index
satellite

Potential monitoring of crop production using a satellite-based Climate-Variability Impact Index

Crop monitoring and early yield assessment are important for agriculture planning and policy making atregional and national scales. Numerous crop growth simulation models are generated using crop state variables and climate variables at the crop/soil/atmosphere interfaces to get the pre-harvest information on crop yields. However, most of these models are limited to specific regions/periods due to significant spatial–temporal variations of those variables. Furthermore, the limited network of stations and incomplete climate data make crop monitoring and yield assessment a daunting task. In addition, the meteorological data may miss important variability in vegetation production, which highlights the need for quantification of vegetation changes directly when monitoring climate impacts upon vegetation. In this sense, remotely sensed metrics of vegetation activity have the following advantages: a unique vantage point, synoptic view, cost effectiveness, and a regular, repetitive view of nearly the entire Earth’s surface, thereby making them potentially better suited for crop monitoring and yield estimation than conventional weather data. For instance, it has been shown that the application of remotely sensed data can provide more accurate crop acreage estimates at national/continental scales. Furthermore, numerous field measurements and theoretical studies have demonstrated the utility of remotely sensed data in studies on crop growth and production. These two applications suggest the feasibility of large-scale operational crop monitoring and yield estimation.

Empirical relationships between the remotely sensed data and crop production estimates have been developed for monitoring and forecasting purposes since the early 1980s. For instance, Colwell found a strong correlation between winter wheat grain yield and Landsat spectral data. However, these relationships did not hold when extended in space and time (Barnett and Thompson, 1983). Later, various other vegetation indices generated from Landsat data, such as the ratio of the reflectance at near infrared to red and the normalized difference vegetation index (NDVI) were used in yield estimation of sugarcane, wheat, and rice. The Landsat series have a spatial resolution of 30 m and can provide reflectance data from different spectral bands. However, these highresolution data require enormous processing effort, and  may not be applicable for surveys of large-area general crop conditions.

Vegetation indices derived from data from the Advanced Very High Resolution Radiometer (AVHRR) were also used for crop prediction, environmental monitoring, and drought monitoring/assessment. For example, found that millet yields in northern Burkina Faso are linearly correlated with the AVHRR NDVI integrated over the reproductive period. Similarly, Hochheim and Barber found that the accumulated AVHRR NDVI provided the most consistent estimates of spring wheat yield in western Canada. The Vegetation Condition Index (VCI) derived from AVHRR data is widely applied in real-time drought monitoring and is shown to provide quantitative estimation of drought density, duration, and effect on vegetation. The VCI can separate the short-term weather signals in the NDVI data from the long-term ecological signals. According to Domenikiotis , the empirical relationship between VCI and cotton yield in Greece are sensitive to crop condition well before the harvest and provide an indication of the final yield. Unfortunately, the AVHRR data are not ideally suited for vegetation monitoring.

Data

1. The MODIS land-cover classification product identifies 17 classes of land cover in the International Geosphere–Biosphere Programme (IGBP) global vegetation classification scheme. This scheme includes 11 classes of natural vegetation, 3 classes of developed land, permanent snow or ice, barren or sparsely vegetated land, and water. The latest version of the IGBP land-cover map is used to distinguish croplands from the other biomes in this research.

2. MODIS LAI

The retrieval technique of the MODIS LAI algorithm is as follows. For each land pixel, given red and near infrared reflectance values, along with the sun and sensor-view angles and a biome-type designation, the algorithm uses model-generated look-up tables to identify likely LAI values corresponding to the input parameters. This radioactive transfer-based look-up is done for a suite of canopy structures and soil patterns that represent a range of expected natural conditions for the given biome type. The mean value of the LAI values found within this uncertainty range is taken as the final LAI retrieval value. In certain situations, if the algorithm fails to localize a solution either because of biome misclassification/mixtures, high uncertainties in input reflectance data or algorithm limitations, a backup algorithm is utilized to produce LAI values based upon the empirical relationship between NDVI and LAI (Myneni et al., 1997).

The latest version of MODIS global LAI from February 2000 to December 2004 was taken to characterize the crop activity in this study. The 8-day LAI products are distributed to the public from the Earth Observing System (EOS) Data Gateway Distributed Active Archive Center. The 8-day products also provide quality control variables for each LAI value that indicate its reliability. The monthly global product was composited across the 8-day products using only the LAI values with reliable quality. The monthly global products at 1-km resolution with Sinusoidal (SIN) projection are available at Boston University. In this paper, monthly LAI at 1-km resolution are used to generate our Climate-Variability Impact Index. As these will be compared with estimates of crop production reported at county/state-levels, the vegetation-based CVII fields were aggregated over the corresponding counties/states using the county bound arias 2001 map from the National Atlas of the United States.

3. AVHRR LAI

AVHRR LAI is used as a substitute for the MODIS LAI to examine the temporal characteristics of vegetation activity over longer time periods. The AVHRR LAI is derived from the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI produced by NASA GIMMS group. Monthly LAI from 1981 to 2002 at 0.258 were derived based on the empirical relationship between NDVI and LAI for different biomes. Literature works show that this empirical relationship might be different for the same biome at different locations. To eliminate this effect, models are generated for each pixel to calculate GIMMS LAI from GIMMS NDVI. The MODIS LAI and GIMMS NDVI overlapped from March 2000 to December 2002, which provides a basis for generating a piecewise linear relationship between these two products. Once the coefficients of the linear model are calculated, the whole range of GIMMS NDVI can be converted into GIMMS LAI, which is consistent with the MODIS products. Our preliminary results indicate a good agreement between GIMMS LAI and MODIS LAI at quarter degree resolution with less than 5% relative difference for each main biome (results not shown).

4. GIMMS NPP

In this research, we also use model-generated estimates of Net Primary Production (NPP) from Nemani  as a predictor of crop production. This NPP is a monthly product from 1982 to 1999 at a spatial resolution of half degree. This global NPP product was generated as follows. GIMMS NDVI were first used to create LAI and FPAR with a 3D radiative transfer model and a land-cover map as described in Myneni. Then, NPP was estimated from a production efficiency model (PEM) using the following three components: the satellite-derived vegetation properties, daily climate data, and a biome specific look-up table of various model constants and variables. Further details can be found in Nemani et al. (2003).

5. Crop production

Crop production data from several sources are used in this research. We focus upon total production, as opposed to yield, for instance, because although the two are highly correlated with each other, total production is typically the parameter of interest for crop monitoring and yield prediction. In this paper, we will explicitly refer to ‘‘production’’ when discussing quantitative results, however for simple qualitative statements wesometimes retain the generic term ‘‘yield’’ as synonymous for ‘‘production’’. The country-level crop production from 1982 to 2000 in European countries is from FAOSTAT 2004 data set. The county-, district-, and state-level production data in United States are from the National Agricultural Statistics Service (NASS) at United States

Department of Agriculture (USDA) USDA provides two independent sets of county crop data: one is a census of agriculture, which is released every 5 years; the other one is annual county crop data, which is based on reports from samples. We used the annual crop estimates in this study. Due to the processing effort required for the fine resolution remotely sensed data, we studied two crops (corn and spring wheat) in two US states (Illinois and North Dakota) at county- and district-scales. At coarser scales, we expanded the regions to include Illinois (IL), Minnesota (MN), Michigan (MI), Iowa (IA), Indiana (IN), and Wisconsin (WI) for corn; to North Dakota (ND), Montana (MT), Minnesota (MN), and South Dakota (SD) for spring wheat; to Kansas (KS), Oklahoma (OK), Colorado (CO), and Nebraska (NE) for winter wheat. The county- and district-level data of Illinois and North Dakota are from 2000 to 2004; the state-level data are from 1982 to 1999.

(Source – http://ieassa.org/en/potential-monitoring-of-crop-production-using-a-satellite-based-climate-variability-impact-index/)

Potential monitoring of crop production using a satellite-based Climate-Variability Impact Index обновлено: March 25, 2014 автором: admin

Leave a Reply

Your email address will not be published. Required fields are marked *

*